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1 SUMMARY 

Speaker recognition methods have long been capable of verifying a speaker’s identity when two 
speech recordings come from similar or identical environments and channels.  A significant 
focus in recent years has been the development of methods for extending the performance of 
speaker recognition systems to scenarios where greater variation between the enrollment and test 
data may exist.  The most common approach for managing these sources of non-speaker 
variation is adoption of a model that assumes the captured recording is a superposition of two 
elements: the speaker-specific features useful for speaker recognition and an additive non-
speaker term.  Several investigators have proposed linear subspace modeling techniques that can 
be used to estimate and factor out the non-speaker component in recorded audio.   

This technical report describes a research effort that investigated an approach to linear subspace 
modeling applied to the sponsor-provided MultiRoom8 corpus.   This data set consists of 51 
speakers recorded in ten different conditions, with each condition defined by a unique 
combination of room and microphone.  Four rooms (conference room, small room, medium 
room, and large room) and five microphone configurations using an omnidirectional and 
directional microphone at different distances provided diverse sources of environmental 
variability.  Several variations on the standard speaker recognition approaches were considered 
in this study.  Baselines levels of performance were first established using the standard GMM-
UBM and GMM supervector as an input feature for three different pattern recognition methods.  
One of the pattern recognition methods, the linear-kernel support vector machine using the 
GMM supervector as input features, has performed very strongly in recent speaker recognition 
evaluations.  A primary avenue of investigation in this study was the use of partial least squares 
(PLS) to decompose the GMM supervector, resulting in a significantly lower-dimensional 
representation in a subspace that would be better-suited for discriminating individual speakers.  
The three pattern recognition techniques considered in this study were applied to both the high-
dimensional GMM supervector and much lower dimensionality PLS projected subspace for 
comparison of the discriminability in the two feature spaces. 

The results of this study indicated that the partial least squares (PLS) subspace consistently 
provided a better feature set for discrimination between speakers.  These results were generated 
for 100 different experiment configurations created by using each of the ten conditions in the 
MultiRoom8 data set separately as training and testing data.  In the PLS subspace, the nearest 
neighbor classifier with a correlation-based distance metric provided the best performance, with 
lower equal-error rates than the support vector machine and Random Forest classifier applied to 
the same features.  The PLS – Nearest Neighbor classifier also outperformed the GMM 
supervector SVM; thus, it was the best performing method for discriminating between the 
MultiRoom8 speakers that was considered in this study.   

The results of this study provide further evidence to support the validity of partial least squares 
decomposition for mitigating certain sources of variability in speaker recognition tasks.  Previous 
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studies have also shown that partial least squares decomposition provides a lower-dimensional 
subspace that is appropriate for discriminating between speakers [1].  The outcomes of this 
research effort encourage further consideration of supervised subspace decomposition techniques 
(e.g. partial least squares) to address scenarios where speaker recognition must be performed in 
the presence of significant room and microphone variability. 

2 INTRODUCTION  

There has been substantial interest in the effect of session variability on speaker recognition 
systems. Session variability can be attributed to a number of possible sources: variation in the 
speaker’s voice due to illness, aging, or stress condition; recording environment (i.e. background 
noise level); and changes in the recording channel (i.e. cellular phone versus landline handset). 
One approach for handling session-to-session variability that has received significant attention is 
a decomposition of the feature supervector into two components.  

𝑀(𝑠) = 𝑚(𝑠) + 𝐴𝑏(𝑠)     (1) 

In such a framework, the recording from a speaker is represented as a feature supervector 𝑀(𝑠) 
that is considered to be a superposition of a speaker model 𝑚(𝑠), which is independent of the 
session conditions, and the term 𝐴𝑏(𝑠), which accounts for the session variability. There have 
been a number of approaches developed in recent years that utilize this basic framework, 
differentiated by the various assumptions that are made while estimating the model parameters. 
Eigen-voice methods [2] assume that the feature supervector 𝑀(𝑠) is constrained to a linear low-
dimensional “speaker space”. This assumption significantly reduces the computational 
complexity and reduces the time required for speaker adaptation. The eigen-voice method was 
combined with extended maximum a posteriori (EMAP) estimation to produce the eigen-
channel MAP method [3].  In this method, the EMAP estimation is used to include the 
correlations between Gaussian components in the model, adding computational complexity but 
also greater modeling power. The resulting decomposition is similar to the feature mapping of 
Reynolds [4]; however, Reynolds assumes a discrete set of channel conditions whereas all of the 
eigen-methods allow for a continuous representation of channel effect. Alternatively, rather than 
performing speaker adaptation, Vogt et al. [5] developed a more direct model of session 
variability that removed the need for discrete classification and labeling of channel conditions. 
The most significant changes in Vogt et al. are reflected in the assumptions regarding subspace 
dimensionality and the manner of using the training data. This technique provides the basis for 
the GMM latent factor analysis (LFA) used in the MIT Lincoln Laboratory 2008 Speaker 
Recognition System [6].  

Altogether, previous work in speaker recognition provides substantial empirical evidence that 
decomposition of the feature vector into speaker and non-speaker components is an appropriate 
approach to mitigating the problems caused by session variability.  There has been a significant 
amount of work towards dimensionality reduction, using techniques such as Principal 
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Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Latent Symantec 
Analysis (LSA). The significance of this study is to assess the effectiveness of dimensionality 
reduction techniques on performance for a speaker recognition system in the presence of 
environment-based variability.  This study will also examine the use of partial least squares 
(PLS), which has only recently seen use in the speaker recognition community [1], as well as a 
proposed method for nonlinear dimensionality reduction.  The dimensionality reduction 
techniques will be used in conjunction with pattern classification method such as the support 
vector machine (SVM), nearest neighbor, and Random Forest classifier.  The state of the art 
automatic speaker recognition system performs relatively well on channel mismatch, but other 
environmental factors including room variability may still pose a significant challenge. 

This study utilized the MultiRoom8 data set, made available for this project by the sponsor. The 
MultiRoom8 data set consists of multi-session audio recordings with collection conditions 
designed to include a number of distinct environmental scenarios (e.g. noise and room acoustics). 
A total of 424 audio recordings were used in this study, each approximately three minutes in 
duration (the data collection procedure was based on an interview scenario).  As part of the 
experiment setup process, each audio recording was divided into two segments of equal length to 
allow training and testing within a condition (since only one recording was available per speaker 
per condition).  The environments in MultiRoom8 utilized in this study include three distinct 
rooms of various sizes: small (206 ft2, 19 m2), medium (430 ft2, 40 m2), and large (2013 ft2, 187 
m2). There were five microphone/recording setups available, although not all were available in 
each environment. In the small, medium, and large rooms, directional and omni-directional 
microphones were located at a range of distances from the speaker.  From the available data, a 
set of ten conditions were selected for analysis of the variability introduced by different room 
and microphone types.  The audio files used in this study were collected from a group of 51 
speakers with 35 speakers common to all ten of the conditions.  Table 1 lists the number of 
speakers present for each room/microphone combination.  There are four rooms, distinguished 
by size, and two types of microphones (directional and omnidirectional) at different distances (3 
ft, 5 ft, close, mid-distance, and far).  In Condition E, the directional microphone at a distance of 
5 feet is pointed away from the speaker. 

3 METHODS, ASSUMPTIONS, AND PROCEDURES 

The research effort for this project can be divided into three experiment groups: 1) a baseline 
study using the GMM-UBM classifier and evaluation of the GMM-UBM parameter settings 
appropriate for the MultiRoom data set, 2) evaluation of speaker recognition techniques that 
utilize the GMM supervector as input features, and 3) evaluation of the effect of supervector 
decomposition techniques on speaker recognition system performance.  Thus, the three 
experiment groups are organized by increasing sophistication, from baseline GMM-UBM 
techniques that are well-established in the speaker recognition community and progressing to 
more recently proposed methods for supervector decomposition. 
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The SPro and ALIZE/LIA [7] open-source toolboxes provided the primary framework for 
implementation of the speech feature processing and speaker recognition algorithms.  These 
tools provided the code basis for turning the .wav audio files in the MultiRoom data set into 
GMM-UBM models, which were a necessary component for all of the studies performed in this 
research effort.   

3.1 Baseline GMM-UBM processing  

For all of the experiments performed in this research effort, the feature sets that were used were 
in some way derivatives of the GMM-UBM model.  Thus, the baseline GMM-UBM plays an 
important role in all of the proposed work.  Figure 1 illustrates the processing of computing the 
GMM-UBM for any .wav recording (to be used for either enrollment or verification).   

 

Figure 1.  General processing flow for generation of the GMM-UBM model  

Each of the functions within the GMM-UBM generation process contains parameters critical to 
the final model.  The values for the parameters were determined based on the speaker recognition 
literature and through sensitivity analysis conducted using the MultiRoom data.  In this study, the 
GMM-UBM setup used a 32-element feature vector constructed from 16 MFCC coefficients and 
the first order derivatives.  Cepstral coefficients were extracted from 20 millisecond frames with 
50% overlap.  Once the cepstrum coefficients were extracted, the matrix of data for each 

Table 1.  Number of speakers representing each room/microphone combination.   

Condition Room Microphone Number of speakers
A Oasis Omni @ close 51
B Small Dir @ 3ft 39
C Medium Dir @ 3ft 44
D Large Dir @ 3ft 39
E Small Dir @ 5ft 42
F Medium Omni @ close 44
G Small Omni @ mid-dist 39
H Medium Omni @ mid-dist 44
I Small Omni @ far 43
J Large Omni @ far 39  
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recording was normalized and silent frames were removed using the ALIZE/LIA “NormFeat” 
and “EnergyDetector” functions.  The “NormFeat” function standardizes each column of cepstral 
coefficients to be zero-mean and unit-variance, and it is run both before and after the 
“EnergyDetector” silent-frame removal stage.  The “EnergyDetector” function determines 
clusters of frames using a Gaussian mixture model and the highest energy frames are selected 
based on the weighting parameters of the Gaussian mixture model.  After normalization and 
silence removal, the MFCC coefficients were used to either estimate a universal background 
model (UBM) or adapt a Gaussian mixture models (GMM), depending on whether the input 
.wav file is from the development data set or if it is to be used for training/testing.  The UBM 
was generated from 100 separate speaker files containing more than five hours of speech.  A 
750-component diagonal covariance GMM was fitted to each of the MFCC representations. 

A sensitivity analysis was conducted on the GMM-UBM Model to determine the relationship 
between the many variables in the model and the model output.  The GMM-UBM parameter 
sensitivity study focused on parameters in the energy detector, UBM training, and GMM 
adaptation stages.  The first effort in the sensitivity analysis focused on the potentially influential 
parameters within the “EnergyDetector” function, which are listed in Table 2 along with the 
range of values to be considered: 

Table 2.  Parameters within the “EnergyDetector” function of the GMM-UBM that were examined in the 
sensitivity study. 

Parameter Range of values
minLLK [-500, -50]
maxLLK [50, 500]
nbTrainIt [5, 20]

varianceFloor [0.0001, 1000]
varianceCeiling [1, 10]

mixtureDistribCount [2, 20]
baggedFrameProbabilityInit [0.001, 1]

thresholdMode {weight,meanStd}
alpha [0, 1]  

 
There were 69,120 possible combinations of the parameters using the ranges of values provided 
in Table 2.  A subset of 10,000 of the combinations was downselected and five .wav recordings 
were processed through the first four stages in Figure 1 using each of the 10,000 sets of Energy 
Detector function parameters.  The number of frames extracted from the .wav recording were 
observed and stored for later analysis to examine the relationship between the extracted cepstral 
feature set and the Energy Detector parameters.   

The second sensitivity study examined the relationship between the performance of the speaker 
recognition system and 1) the mixtureDistribCount in the “EnergyDetector” function (found to 
be the primary significant parameter) and 2) the number of mixtures in the GMM-UBM model.  
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The number of mixtures used in Energy Detector were selected from the set {2,4,6,8,10} and the 
GMM-UBM model selected its number of mixtures from the set {500, 750, 1000, 1500}.  A 
cross-condition speaker recognition experiment (using all available conditions in the MultiRoom 
data set) was run for all 20 combinations of parameter values.  The equal-error rates (EER) for 
all conditions were stored and analyzed to investigate the preferred parameter values.  

As an alternative to performing verification and recognition using the GMM-UBM models, an 
approach that has recently grown in popularity is generation of a GMM supervector for use as a 
feature.  The GMM supervector is generated by concatenating the means of each Gaussian 
component from the GMM for a corresponding .wav file.  This produces a vector with a number 
of elements equal to the product of the number of cepstral coefficents and the number of GMM-
UBM components.  In this study, there were 32 cepstral coefficients with 750 GMM components 
resulting in a GMM supervector with length 24,000.  The GMM supervectors were the basis for 
the second set of experiments conducted in this research effort, and they provide a strong feature 
set that is well supported by the literature to allow the use of pattern recognition techniques for 
discriminating between individual speakers. 

3.2 Pattern Classification Techniques 

The GMM supervectors were used as features for input to one of three pattern recognition 
techniques.  The purpose of the pattern recognition techniques is to perform a mapping between 
the GMM supervectors and the individual speaker labels.  All of the pattern recognition 
techniques considered in this study have characteristics that make them particularly suitable for 
the speaker recognition task: they can estimate any necessary parameters with a single training 
vector per speaker, they can be configured to manage mapping to multiple speakers (i.e. perform 
speaker identification), and they can operate in the high-dimensional feature space without 
significant concerns about computational complexity or ill-conditioning.  The three pattern 
recognition techniques that were applied to the GMM supervector features were 1) the nearest 
neighbor classifier, 2) the support vector machine, and 3) the Random Forest classifier.   

Table 3 lists some distinguishing characteristics for the classifiers considered in this study.  
Local classifiers make a classification decision based only on the neighboring training samples, 
whereas aggregate classifiers rely on parameters that are calculated from all of the available 
training data.  A simple test for whether a classifier uses “local” or “aggregate” training data can 
be conducted by analyzing whether the classifier’s output for some test sample xTEST would be 
sensitive to the addition of a large amount of new training data at a point in feature space not 
near xTEST.  If the classifier’s output is not affected by the addition of new training samples, the 
classifier makes “local” decisions.  The second classifier property specified in the table is 
parametric versus nonparametric classifiers.  Parametric classifiers make use of a model to 
condense the information in the training data to a finite number of parameters, whereas a 
nonparametric classifier preserves the entire set of training data for making decisions on test 
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data.  Thus, the storage requirements increase for nonparametric classifiers as more training data 
is acquired. 

The nearest neighbor classifier assigns labels to new feature vectors through a fairly 
straightforward and intuitive process.  The distance is calculated between the unlabeled test 
sample and all of the available labeled training data.  The label of the nearest training sample (i.e 
nearest neighbor) is assigned to the test sample.  This classification rule is supported by 
theoretical results that relate it to nonparametric modeling of probability distribution functions 
and the likelihood ratio test [8].  For the present study, the negated value of the correlation 
coefficient was used as the measure of distance between two GMM supervectors.   

The support vector machine (SVM) is a sparse, linear, kernel machine.  The kernel mapping 
function can potentially be used to introduce nonlinearity and transform the data into a higher 
dimensional space where it may be separable by a hyperplane.  The SVM finds a decision 
boundary with the constraint of maximizing the margin, and identifies a small set of “support 
vectors” that define the decision boundary (and also determine the value of the margin since they 
are the closest vectors to the decision boundary).  Since the SVM utilizes only a small number of 
training samples as support vectors, it encourages sparseness, and rather than storing all of the 
training data the SVM only requires a limited subset of training vectors to discriminate between 
classes.  In this research effort, the LIB-SVM [9] implementation was used with two kernel 
configurations: a linear kernel when operating on the GMM supervectors as features and a radial-
basis function (RBF) kernel with unit variance when operating in a low-dimensional subspace 
generated by linear projection of the GMM supervectors.  The SVM is intrinsically configured 
for binary classification (where only two classes of data are present).  To extend the SVM to the 
current application where many speakers are present, a set of (𝑁(𝑁 + 1))/2 SVMs was 
constructed, with each SVM discriminating between a pair of the N total speakers in the data set. 
The (𝑁(𝑁 + 1))/2 classifiers then vote on the final classification of a test sample. 

The Random Forest classifier is an ensemble classifier that votes amongst decision trees 
generated with each node using randomly-selected features [10].  Each individual decision tree 
splits the data using a subset of features at each node, and continues splitting until it is 
overtrained to achieve zero empirical error (i.e. perfect classification of the training data).  The 

Table 3.  Characteristics of the three pattern classification methods considered in this study. 

Classifier Acronym 
Local / 

Aggregate 
Parametric / 

Nonparametric Reference 
Nearest Neighbor NN Local Nonparametric [8] 

Support Vector Machine SVM Aggregate Parametric [9, 10] 
Random Forest RF Local Parametric [11] 
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set of decision trees are not highly correlated, however, because of the random selection of a 
feature subset (e.g. two-dimensional) of the available features for use in each node.  Therefore, 
the individual trees within the Random Forest classifier will be more uncorrelated as the number 
of available features is increased.  Assigning labels to new test samples occurs by having the 
decision trees in the Random Forest vote, and the effects of overtraining will be mitigated by the 
fact that each decision tree is overtrained differently (due to the random selection of features 
used at each node and the low correlation between trees).  Pilot studies indicated that speaker 
recognition system performance using the Random Forest classifier was not highly sensitive to 
the number of component decision trees, so a forest size of 400 trees (near the middle of the 
range of values investigated in the pilot study) was chosen for use in this study.    

 

3.3 GMM Supervector Decomposition 

The second group of experiments focused on the use of GMM supervectors as features for input 
to pattern recognition techniques, which have been shown in previous studies to provide 
sufficient information for use in speaker discrimination [11].  However, the supervectors are 
extremely high-dimensional, which introduces potential concerns about computational 
complexity and overfitting during the learning stages in the pattern recognition techniques.  More 
significantly, these supervectors contain non-speaker artifacts introduced by the channel, 
environment, and session-to-session variability.  These factors motivate the use of subspace 
decomposition techniques to find a lower-dimensional representation of the GMM supervector 
that represents only the speaker-specific attributes and will be robust to variability introduced by 
changes in channel, environment, and session.  An illustration of the desired effect from the 
subspace decomposition is shown in Figure 2.  In the high-dimensional supervector space, 
several speakers may be indistinguishable due to non-speaker sources of variability.  The ideal 
subspace decomposition would project the supervectors into a lower-dimensional space where all 
recordings from a single speaker cluster together, and different speakers are separable.  Two 
techniques were considered as part of this research effort: partial least squares (PLS) 
decomposition and classification-directed dimensionality reduction (CDDR).    

Partial least squares (PLS) was originally developed within the chemometrics community, but 
has since been applied to a variety of topics including bioinformatics (e.g. [12]) and medical 
diagnosis (e.g. [13]), and more recently speaker recognition [1].  It is most frequently applied as 
a regression method to model the relationship between a set of independent variables (i.e. 
features) X and dependent variables Y.   
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Figure 2.  Illustration of ideal subspace decomposition 

Partial least squares performs a linear projection to a lower-dimensional subspace, which allows 
use on high-dimensional data sets without running into the large p, small n problem.  One 
advantage of partial least squares over other linear subspaces projection methods such as 
principal component analysis is that partial least squares method utilizes the data labels.  
Therefore, the resulting lower-dimensional subspace is more likely to maintain separability 
between classes, by using a criterion that seeks linear projections w and q that maximize the 
covariance between the independent and dependent variables X and Y, respectively, in the lower-
dimensional projection space.  

( )
1, 1

max cov ,
w q

Xw Yq
= =

                                                               (2) 

This contrasts with PCA, which maximizes the variance of the data under the constraint of a 
unit-norm weight vector, ignoring any available class labels for the training data.   

The proposed classification-directed dimensionality reduction (CDDR) generates a matrix of 
similarities using classification techniques applied to high-dimensional data sets.  Existing 
methods for nonlinear dimensionality reduction techniques (e.g. Isomap [14]) operate on a 
matrix of distances to neighboring points, and may suggest an approach for finding a lower-
dimensional subspace that allows data visualization or may be more conducive for identifying 
clusters.  Unlike traditional manifold learning methods that rely on distances measures for 
construction of a similarity matrix, CDDR uses classification methods which may be less 
susceptible to effects of operating in high-dimensional data spaces.  Thus, robust operation in 
high-dimensional data spaces is one of the characteristics that should be considered when 
selecting a classification method for use in CDDR.   Classifiers such as Random Forest [10] and 
Partial Least Squares Discriminant Analysis (PLSDA) [15] would be appropriate to consider in 
such conditions. 
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There are two steps in the classification-directed dimensionality reduction.  The first step in the 
classification-directed dimensionality reduction is generation of an n by m classification table, 
where n corresponds to the number of in a development data set and m is the number of discrete 
classes for some physically relevant variable (e.g. speaker ID, gender, and environment).  The 
class label set used in CDDR is selected by the operator, and many relevant label sets can 
potentially yield good results. 

After the classification first stage in CDDR, the result is the classification table, with the (ith, jth) 
entry corresponding to the probability that observation i belongs to class j.  To achieve this in 
some experiment setups (or with certain classifiers), it may be necessary to have multiple feature 
vectors from each observation, such that class-membership probabilities can be estimated based 
on the proportion of features vectors assigned to each class.  Once the classification table T has 
been successfully generated, it can be decomposed using principal component analysis (PCA).  
Thus, the final CDDR decomposition parameterization consists of the parameters for the 
classifier in the first stage (i.e. Random Forest) and the PCA loadings in the second stage.   

The subspace projection from the high-dimensional supervector features to a lower-dimensional 
space requires a set of parameters which must be estimated from some data.  To provide a more 
robust experiment result, the GMM supervector decompositions were learned using a separate 
development data set.  Given the available data, there are several possible methods by which the 
development data set could be constructed: the speakers may be either the same or different from 
those in the training and test data sets, and the room/microphone combinations may either be the 
same and/or different from those in the training and test data sets.  Table 4 lists the four 
development data sets that were considered in this study.  While the table is constructed with the 
example of training on Condition A and testing on Condition B, the development data set is 
adjusted as necessary within the iterations of the cross-condition training and testing as all ten 
available conditions are eventually used for both training and testing. 

Table 4.  Composition of the development data sets used to learn the projection coefficients for GMM 
supervector decomposition. 
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3.4 Experiment design and list of experiments 

The research effort included several classification experiments to evaluate and assess the 
performance of different techniques within the speaker recognition framework.  There were 
several parts of the experiment methodology that were common to all of the experiments.  Each 
of the speaker recordings in the sponsor-provided MultiRoom8 data set were divided into two 
segments by splitting each .wav file at the midpoint in the recording.  The set of first-half 
segments were used for all training and development data set needs, and the set of second-half 
segments were always reserved for testing and evaluation. Since the microphones for each room 
(small, medium, and large) were recorded simultaneously, this division of each file into two 
segments will prevent comparison of recordings on matching text.  Potentially more significant is 
that any anomalous events (i.e. room ventilation switching on, speaker clearing their throat) 
should not occur in both training and testing files with the same regularity.  

For the subspace decomposition methods, the first ten speakers (organized by speaker ID) were 
used for training and testing.  This preserved the higher-numbered speakers for the development 
set when the development set was to contain a different set of speakers than used for training and 
testing.  Another common element of the experiment setup was the use of cross-condition 
testing.  Each of the ten room/microphone conditions listed in Table 1 were used both for 
training and testing against all of the other conditions.  Thus, results in the form of 100 detection-
error trade-off (DET) curves can be generated and equal-error rates (EER) can be calculated.  
These 10x10 matrices of equal-error rates were the common basis in this study for comparison of 
speaker recognition techniques. 

4 RESULTS AND DISCUSSION 

Results will be presented in this section for the following experiments which were conducted as 
part of the research effort: 

• A large-scale study of GMM-UBM parameter sensitivity to develop an appropriate baseline 
model 

• Cross-condition EER matrices using the baseline GMM-UBM and the three pattern 
classification methods applied to the GMM supervector features 

• Results of speaker recognition in the PLS subspace using the pattern classification methods, 
with comparison to the best performing technique that used the GMM supervector based 
features.  These results will be presented for all four of the development data set 
configurations.  The CDDR decomposition technique was not fully developed to the point of 
implementation in the speaker recognition system, so results will focus solely on the PLS 
decomposition. 

• Effect of the dimensionality of the PLS subspace on performance of the speaker recognition 
system. 
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4.1 Baseline GMM-UBM parameter sensitivity   

There were two experiments that were conducted to evaluate the sensitivity of the GMM-UBM 
model to the parameters of the ALIZE/LIA toolbox functions.  The first experiment examined 
the effect of several EnergyDetector function parameters on the number of frames that were 
retained.  Figure 3 plots the correlations between the number of frames in the feature file and 
each of the EnergyDetector function parameters included in the sensitivity analysis.  There are 
two methods within the EnergyDetector function for setting the threshold for retaining frames: a 
weighted threshold based on the component weightings in the GMM, and a mean-based 
threshold that is calculated by subtracting a multiple of the standard deviation from the 
component mean (i.e. “meanStd”).  The correlations plotted in Figure 3 clearly show that, for 
each threshold method in EnergyDetector, there is only a single relevant parameter controlling 
the number of selected frames.  The “weighted” threshold method in Energy Detector was used 
throughout this research effort, so a follow-up examination of the number of GMM components 
(“mixDistribCount”) was conducted. 

The second phase of the sensitivity analysis focused on the two most relevant parameters in the 
generation of the GMM-UBM model: the number of components in the GMMs in both Energy 
Detector and the GMM-UBM model.   Cross-condition testing on all ten MultiRoom8 data sets 
results in a set of 100 equal-error rates (EERs).  Figure 4 shows the median EER for cross-
condition training and testing when using four different values for the number of GMM-UBM 
model components and five values for the number of GMM components in the energy detector 
(20 pairs in total).  The left subplot shows median EER over a set of 100 speaker recognition 
experiments; the right subplot shows the increase in EER over the minimum EER value from the 
left subplot.  Darker colors indicate lower EERs and better performance conditions.  The 
strongest trend is the poor performance when using only two components in the Energy Detector 

 

Figure 3.  Correlation between the values of the “EnergyDetector” function parameters and the size (i.e. 
number of frames) of the feature file for each recording.   
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GMM (leftmost column of left subplot); performance is also slightly worse than the best –
performing value when using a larger number (8 to 10) of components in the Energy Detector 
GMM.  Best overall performance is achieved when using six components in the Energy Detector 
GMM and a 1000-component GMM-UBM.  Given the likelihood that the parameter values 
corresponding to the overall minimum in EER are benefiting from some overfitting (and the 
result would not be consistent in validation with a new test set), the GMM-UBM model in this 
research effort was constructed using six components in the Energy Detector GMM and a 750-
component GMM-UBM model.  The median EER for these parameter setting is 1.5% higher 
(20.6% versus 22.1%) than the overall best parameter settings. 

4.2 MultiRoom8 speaker recognition results   

Baseline GMM-UBM speaker recognition results for the MultiRoom8 cross-condition training 
and testing are shown in Table 5.  The table contains the equal-error rates (EERs) for each 
training and test condition.  As expected, the table indicates substantial degradation in 
performance (i.e. increase in EER) when there is a mismatch between the training and testing 
conditions.  This can be seen by comparing the values on the diagonal (same condition train and 
test) with off-diagonal values in the same column.  The average increase in off-diagonal EER in 
each column versus “same condition” EER is 10.4%.  One interesting exception to this trend is 
when training in the “Large, Dir@3ft” condition.  Due to the noise conditions present in the large 
room, performance often improves when the test data is from a “better” condition, even if it 
results in a mismatch in the training and test conditions.   

The first sophistication beyond the baseline GMM-UBM that was considered in the speaker 
recognition system was to use extracted GMM supervectors as inputs to pattern recognition 
techniques.  Three widely-known pattern recognition algorithms were considered: nearest 
neighbor, Random Forest, and the support vector machine (SVM).  These algorithms have 

 

Figure 4.  Representation of the equal-error rates (EER) as a function of two parameters in the GMM-UBM 
model: the number of components used in the GMM in the EnergyDetector function (x-axis) and the number 

of components in the GMM used in TrainTarget to learn the distribution of MFCCs (y-axis).   
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characteristics that make them particularly suitable for straightforward application to the GMM 
supervector speaker recognition task: they can estimate any necessary parameters with a single 
training vector per speaker and they can manage the high-dimensional feature space.  The SVM 
applied to GMM supervectors has been used in several studies of speaker recognition and NIST 
evaluations, and is widely viewed as a preferable approach when compared to the classic GMM-
UBM.   

The equal-error rates for all cross-condition training and testing using the GMM Supervector 
Nearest Neighbor (GMMSV-NN) are shown in Table 6.  The difference between the EERs using 
the GMMSV-NN and the baseline GMM-UBM are shown in Table 7, with positive values 
indicating better performance (lower EER) with the GMMSV-NN method.  The color coding in 
the table indicates changes in EER of at least 5%, with green cells indicating better performance 
with the GMMSV-NN and red cells indicating better performance with the baseline GMM-
UBM.  Overall, the GMMSV-NN does not appear to improve upon the GMM-UBM baseline; 
instead, there is some degradation in performance, particularly in mismatched training and test 
conditions.  Several of the EERs that did improve are for same-condition train and test, which 
further widens the gap between matched-condition and mismatched-condition equal-error rates.  
For the GMMSV-NN, the average penalty for mismatched training and test conditions (i.e. off-
diagonal EERs) relative to EER for same-condition training and testing (i.e. EERs on the 
diagonal) is 20.6%.  One potential influence in this large increase is that the “Large, Dir@3ft” 
same-condition training and test EER was substantially improved with the GMMSV-NN, such 
that this column in the EER matrix is now also deleteriously contributing to the average penalty 
for mismatched conditions.   

The next classification technique to be applied to the GMM supervector features was the 
Random Forest classifier.  Table 8 shows the EER matrix, and Table 9 shows the change in EER 

Table 5.  Matrix of equal-error rates (EERs) using the baseline 750-component GMM-UBM for the 100 cross-
condition experiment setups constructed with the MultiRoom8 data set. 
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from the GMM-UBM baseline with the same color coding as Table 7, with positive values 
indicating better performance with the GMMSV-RF.  Performance with the GMMSV-RF is 
universally degraded, with increases in all EERs in the cross-condition train and test matrix.  
While the Random Forest should benefit from the high-dimensionality of the feature space (since 
it decreases correlation between the individual decision trees), the Random Forest classifier can 
be impacted by the presence of a significant number of uninformative features.  These decision 
trees, constructed largely from noisy features, can overwhelm and outnumber the smaller 
percentage of component decision trees that would correctly classify the test sample.   

The final classification methods considered in this study was the Support Vector Machine 
(SVM), which has been included in many previous investigations of speaker recognition (e.g. 
[11]).  In this experiment, the SVM with a linear kernel was used to develop a classifier for 
discriminating between each possible pair of speakers.  The EERs for the cross-condition testing 
are shown in Table 10, and the change in EER versus the baseline GMM-UBM (with green and 
red color coding of improvements and degradations) is shown in Table 11.  The large number of 
green-shaded cells in Table 11 indicates that the GMMSV-SVM provides improved performance 
for many of the training and testing conditions.  The average penalty for mismatched training and 
test conditions is 16.3%, which is still higher than the GMM-UBM value, indicating that a 
greater improvement is seen in the matched conditions than in the mismatched conditions.    

Thus, amongst the techniques operating on the GMM supervector, the GMMSV-SVM provides 
the best performance on the MultiRoom8 data set as well as outperforming the GMM-UBM 
baseline by a substantial margin in many conditions.  This result is consistent with the research 
literature regarding performance of the GMMSV-SVM in speaker recognition tasks.  An analysis 
of patterns within the performance of the GMM-SVM reveals no significant preferences for 
certain conditions or scenarios within the results.  Similarly, the level of improvement over the 
GMM-UBM baseline does not appear to be influenced by the room or microphone conditions.  
Figure 5 shows a two-dimensional representation of the results in Table 10.  Each point in the 
graph represents one of the ten MultiRoom8 conditions, and distances between points are 
calculated from the EER matrix (with EER serving as a proxy for distance).  Also included in the 
figure are four additional conditions that used significantly different recording devices (GSM and 
CDMA cellphones, landline, and push-to-talk radio).  Low equal-error rates would result in 
points close together, and larger equal-error rates will force points to be further apart.  The lack 
of clusters and approximately equal spacing between points representing the omnidirectional and 
directional microphones indicates the lack of strong preference within the GMM-SVM 
framework for a particular experiment setup; similarities in microphone, room, or recording 
distance do not result in significantly tighter clusters of points.   
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Table 6.  Matrix of equal-error rates (EERs) using the nearest neighbor classifier applied to the GMM 
supervector (GMMSV-NN) for the 100 MultiRoom8 cross-condition experiment setups. 

 

 

 

 

Table 7.  Differences between the EER matrices for the GMMSV-NN and the baseline GMM-UBM.  Positive 
values indicate better performance with the GMMSV-NN.  Cells shaded green identify changes in EER of at 

least 5%; cells shaded red identify changes in EER of at least -5%. 

 

 

Approved for Public Release; Distribution Unlimited. 
 

16



 

Table 8.  Matrix of equal-error rates (EERs) using the Random Forest classifier applied to the GMM 
supervector (GMMSV-RF) for the 100 MultiRoom8 cross-condition experiment setups. 

 

 

 

 

 

Table 9.  Differences in the equal-error rates between the GMMSV-RF and the baseline GMM-UBM.   
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Table 10.  Matrix of equal-error rates (EERs) using the linear kernel support vector machine applied to the 
GMM supervector (GMMSV-SVM) for the 100 MultiRoom8 cross-condition experiment setups. 

 

 

 

 

 

Table 11.  Differences in the equal-error rates between the GMMSV-SVM and the baseline GMM-UBM.   
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Figure 5.  Representation of the distance between the MultiRoom8 conditions based on equal-error rates for 
the GMMSV-SVM.   

Figure 6 shows a scatter plot comparing the EERs between the baseline GMM-UBM and the 
GMMSV-SVM.  Each point represents one of the entries in the EER matrices (thus, there are a 
total of 100 points).  The red and green lines in the plot indicate the +/- 5%  thresholds for the red 
and green coding shown in Table 10; points above the green line would be shaded green and 
points below the red line would be shaded red.  The conditions for which performance improves 
when using the GMM-SVM are not concentrated at any particular level of baseline GMM-UBM 
performance; the GMM-SVM improves performance in many conditions where the baseline 
GMM-UBM did relatively poorly and also conditions where it did relatively well (i.e. better than 
its average).   

 

Figure 6.  Scatter plot of equal-error rates for the GMMSV-SVM and baseline GMM-UBM on the 100 
MultiRoom8 cross-condition experiment configurations.   

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

 

 

OaOmn1
SmDir1
MdDir1
LgDir1
SmDir2
MdOmn1
SmOmn2
MdOmn2
SmOmn3
LgOmn3
OaGSM
OaCDMA
OaLandline
OaPTT

0 10 20 30 40 50
0

10

20

30

40

50

SVM EER

G
M

M
-U

B
M

 E
E

R

Approved for Public Release; Distribution Unlimited. 
 

19



4.3 Effect of supervector decomposition on speaker recognition system performance   

The speaker recognition results using supervector decomposition are dependent on the 
composition of the development data set used to estimate the subspace projection coefficients.  
Four possible development data sets were considered, with each development data set comprised 
of files from various speakers and conditions (with none of the training or testing files ever 
appear in the development data set).  Recall that the train and test sets only consisted of ten 
speakers, which were the first ten speakers when organized by speaker ID.   

The first development data set was compiled using all speakers (including the ten speakers in the 
training and test sets) but in different room/microphone conditions than used for training and 
testing.  The GMM supervector was projected into a 25-dimensional feature space using PLS, 
and the three pattern classification techniques (nearest neighbor, Random Forest, and support 
vector machine) were applied.  Figure 7 through Figure 9 show the results using nearest 
neighbor, SVM, and Random Forest, respectively.  Each figure includes four subplots.  In the top 
row of subplots, the classifier post-PLS projection is compared to the classifier applied to the 
high-dimensional GMM supervector.  The scatter plot shows the EERs for each classifier setup 
for each of the 100 cross-conditions (points above the solid diagonal line indicate a reduction in 
EER and benefit from using PLS decomposition).  The histogram on the right shows the 
distribution of improvements in EER, where positive values indicate a reduction in EER and 
better performance using the PLS decomposition.  The bottom row of subplots in Figure 7 
through Figure 9 show each classifier post-PLS compared to the GMMSV-SVM, which was the 
best performing technique when operating on the raw GMM supervector. 

In Figure 7, the nearest neighbor classifier applied to the PLS-decomposed supervectors (PLS-
NN) substantially outperforms the GMMSV-NN.  The median improvement is 11.9%.  
Similarly, and perhaps more significant, the PLS-NN also outperforms the GMMSV-SVM with a 
median improvement of 11.5% in the 100 cross-condition speaker recognition tasks.  In Figure 8, 
the SVM with a radial basis function kernel is applied to the PLS-decomposed supervectors 
(PLS-SVM).  The SVM with a radial basis function kernel was not well-suited for classification 
in the high-dimensional GMM supervector space; thus the SVM in the upper left subplot of 
Figure 8 is performing at near chance (50% EER) for all 100 cross-conditions.  In the lower pair 
of subplots in Figure 8, the PLS-SVM is compared with the linear kernel SVM applied to the 
GMM supervector (GMMSV-SVM).  In this comparison, the PLS-SVM is able to provide a 
median improvement of 7.1%.  In Figure 9, the Random Forest classifier was applied to the PLS-
decomposed supervectors (PLS-RF).  As discussed previously regarding Table 8, the Random 
Forest classifier did not perform well in the high-dimensional supervector feature space.  Thus, 
the Random Forest classifier in the upper left subplot is exhibiting near chance performance.  
When the PLS-RF classifier is compared to the GMMSV-SVM, the differences are more evenly 
split in a bimodal distribution centered at zero.  However, the median change in EER is still 5.1% 
(a net improvement). 
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These results suggest that significant improvements in the median EER could be achieved using 
PLS projections developed from all speakers (including the ten speakers in the training and test 
sets) recorded in different room/microphone conditions.  The result is a valid experiment design; 
however it is unlikely that this type of development data will be available in many scenarios.  
Since the MultiRoom8 data set contains 10 conditions, and only two will be used for training and 
testing on any given iteration, there will be eight recordings of each test-set speaker in the 
development data set (albeit in different recording conditions).  Thus, the PLS subspace 
projection gets the opportunity to learn mappings similar to those illustrated in Figure 2 for the 
speakers that are present in the test set.  

  

 

 

 

 

Figure 7.  Performance of the nearest neighbor classifier with PLS projection using the first development 
data set.  
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Figure 8.  Performance of the radial-basis kernel SVM classifier with PLS projection using the first 
development data set.   

 

Figure 9.  Performance of the Random Forest classifier with PLS projection using the first development data 
set.   
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The second development data set was compiled using the same conditions as the training and test 
data but excluding the ten speakers in the test data set (i.e. same conditions, different speakers).  
Thus, the PLS projection will be learned from recordings in environments that are most relevant 
to the recognition task, but for different speakers than those in the test set.  From the plots in 
Figure 10, it can be seen that PLS-NN improves over both the GMMSV-NN and the GMMSV-
SVM, although the median improvement is much less than what was observed with the prior 
development data set.  In Figure 11 and Figure 12, it can be seen that the radial-basis kernel 
SVM and Random Forest classifiers do not perform well on the supervector features (these are 
the same results as shown in Figure 8 and Figure 9 since the raw GMM supervector features are 
not affected by the development data set).  There is also no median improvement when either the 
PLS-SVM or PLS-RF are compared to the GMMSV-SVM.  Thus, the same-condition/different-
speakers development data set appears to not contain enough information for the PLS 
supervector decomposition to learn a mapping that improves performance.  This development 
data set is the smallest of the four considered, which may be one factor affecting the lack of 
benefit from the PLS decomposition. 

 

 

 

Figure 10.  Performance of the nearest neighbor classifier with PLS projection using the second development 
data set.   
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Figure 11. Performance of the radial-basis kernel SVM classifier with PLS projection using the second 
development data set.   

 

Figure 12.  Performance of the Random Forest classifier with PLS projection using the second development 
data set.   
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The next development data set consisted of the non-test-set speakers with recordings from all 
conditions, including training and testing (i.e. all conditions, different speakers).  There is no 
overlap in the test and development speakers, but there is overlap in the test and development 
conditions.  The scatter plots for PLS-NN in Figure 13 show improved EERs for a number of 
cross-conditions, with a median improvement in EER of 7.0% over the GMMSV-NN and an 
improvement of 3.6% over the GMMSV-SVM.  Thus, for a more realistic scenario of 
development data (i.e. large amounts of development data, from conditions including but not 
limited to the training and test conditions, with different speakers), the PLS decomposition is 
able to improve upon the SVM operating on the GMM supervector. In Figure 14, the radial-basis 
kernel SVM is also able to improve upon the linear-kernel SVM operating on the GMM 
supervector, with a median improvement of 2.0%.  However, the Random Forest classifier again 
failed to improve upon the GMMSV-SVM baseline as indicated by the results shown in Figure 
15.  Since the PLS projection reduces the dimensionality of the feature space to D = 25, the 
Random Forest should not be suffering from the same “noise feature” impairment observed 
when the Random Forest is applied to the raw GMM supervectors.  However, in this situation, it 
is possible that the Random Forest is limited by the small number of training samples (only ten 
speakers).   

 

Figure 13.  Performance of the nearest neighbor classifier with PLS projection using the third development 
data set.   
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Figure 14.  Performance of the radial-basis kernel SVM classifier with PLS projection using the third 
development data set.   

 

Figure 15.  Performance of the Random Forest classifier with PLS projection using the third development 
data set.   
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The final development data set was compiled using different speakers and different conditions 
than those used for training and testing (i.e. different conditions, different speakers).  Thus, this 
might represent a scenario where nothing is known about the training and test environments, 
preventing collection of development data to match either the training or test conditions.  
Overall, improvements in EER with the classifiers applied to the PLS decomposed supervectors 
are at least as good or better than observed with the “different speakers, all conditions” 
development data set.  In Figure 16, PLS-NN has a median reduction in EER of 4.6% when 
compared to the GMMSV-SVM.  In Figure 17, the radial-basis kernel SVM applied to PLS 
decomposed supervectors provides a median reduction in EER of 2.7%.  However, the Random 
Forest classifier is again unable to provide a measurable improvement in EER as shown in 
Figure 18.   

 

 

Figure 16.  Performance of the nearest neighbor classifier with PLS projection using the fourth development 
data set.   
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Figure 17.  Performance of the radial-basis kernel SVM classifier with PLS projection using the fourth 
development data set.   

 

Figure 18.  Performance of the Random Forest classifier with PLS projection using the fourth development 
data set.   
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Generalizing from the results presented in Figure 7 through Figure 18 for the PLS subspace 
decomposition, the PLS decomposition paired with the nearest neighbor classifier provided the 
best EER performance, and also consistently outperformed the GMM supervector SVM.  Table 
12 is formatted similar to tables presented previously and shows the change in EER when 
comparing the PLS-NN to the GMMSV-SVM.  Positive values indicate better performance 
(lower EER) using PLS-NN, and green-shaded cells identify changes of at least 5%.  The median 
reduction in EER using PLS-NN is 4.6%, which is 22% of the median EER observed over all 
100 cross-conditions with the GMMSV-SVM classifier.  Thus, the PLS-NN classifier, when 
provided with sufficient development data from different speakers in different conditions, was 
able to reduce EERs by 22%.   

Another result of potential interest is direct comparison of the PLS-NN and PLS- radial basis 
SVM.  Both approaches generally showed improvement over the GMMSV-SVM when given 
appropriate development data.  However, it is worth investigating more closely whether the 
median improvement in EER was a result of each technique performing better on a different 
subset of the 100 possible cross-condition speaker recognition tasks.  If consistent patterns were 
observed in the EER improvements for the different techniques, and if a relationship between the 
training/test conditions and the improvement in EER could be learned, it would provide an 
opportunity for fusion of the two classification methods.  Thus, in Table 13 the difference in 
EER is shown for the PLS-NN and PLS-SVM classifiers.  The results are plotted for the 
“Different Conditions, Different Speakers” development data set with PLS using a 25-
dimensional subspace.  The green-shaded cells indicate where PLS-NN was capable of an EER 
at least 5% less than PLS-SVM (negative values in general indicate better performance with 
PLS-NN).  The median change in EER is actually 0%; there are a substantial number of entries 

 

Table 12.  Differences in the EER matrices for the GMMSV-SVM and the PLS-NN.   
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equal to zero for conditions where both classifiers performed equally.  However, the average 
change in EER is 2.2% (in favor of PLS-NN).  The results in Table 13 do not suggest a strong 
pattern amongst conditions; in fact, the lack of any consistent symmetry in the table may suggest 
that there is no pattern to which conditions are preferred by one technique or another.  In the 
absence of such patterns, the recommended approach may to be to consider the technique that 
provides the best average or median performance, which in these experiments was identified to 
be the PLS-NN method. 

One of the primary goals of this effort was to investigate the ability of the subspace 
decomposition techniques to find a lower-dimensional representation of the GMM supervector 
that would be less sensitive to changes in the environment and channel.  A particular instance 
that might be illustrative is the experiment setup where the “Conf, Omni @ close” is used for 
training and “Small, Dir@5ft” is used for testing.  These conditions are significantly different, 
and produce one of the largest EERs in the GMM-UBM baseline.  The GMM-UBM baseline 
achieves an EER of 30.8%, and the GMMSV-SVM reduces the EER to 26.4%.   However, using 
the PLS-NN with a development data set containing different speakers recorded in different 
conditions and a 25-dimension subspace, the EER can be reduced to 11.1%.  Therefore, for at 
least one example pair of training and test conditions, the PLS subspace decomposition is 
capable of finding a lower-dimensional feature vector that represents individual speakers with 
significantly reduced variability or artifacts from the environment. 

 

Table 13.  Difference in the EER matrices for PLS-NN and PLS-SVM.   

 

 

4.4 Effect of supervector decomposition subspace dimensionality 

An additional avenue of investigation examined the effect of PLS subspace dimensionality on 
performance, and potential improvement in EER, for the speaker recognition system.   The 
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results reported previously in Figure 7 through Figure 18 were shown for PLS projections into a 
25-dimensional subspace.  In Figure 19 through Figure 21, results are shown for all three 
classifiers (nearest neighbor, SVM, and Random Forest) as a function of the number of PLS 
subspace dimensions.  The boxplots in each figure represent the distribution of EERs within a 
single cross-condition EER matrix.  Red lines are the median of the distribution, upper and lower 
edges of the blue box identify the 75th and 25th percentile (N = 100), and the red hash symbols 
indicate outliers that are more than 1.5 standard deviations beyond the edge of the box.  Cross-
condition EER matrices were generated as the number of PLS subspace dimensions was varied 
from D = 5 to D = 30, with the upper limit imposed by the amount of available data.  The right 
side of the plot also shows distributions of EERs for each classifier applied to the high-
dimensional GMM supervector, as well as a comparison to the GMMSV-SVM.   

There is a consistent trend observed for all three classifiers, and it is particularly noticeable by 
tracking the median value of the distribution across all of the experiment setups.  The most 
significant improvement is seen as the number of PLS subspace dimensions are increased to 15, 
beyond which performance continues to improve but with diminishing returns.  For all  

 

Figure 19.  Effect of PLS subspace dimensionality on the distribution of EERs generated using PLS-NN for 
all 100 MultiRoom8 cross-condition experiment setups.   
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Figure 20.  Effect of PLS subspace dimensionality on the distribution of EERs generated using PLS – radial 
basis kernel SVM for all 100 MultiRoom8 cross-condition experiment setups.   

 

Figure 21.  Effect of PLS subspace dimensionality on the distribution of EERs generated using PLS-RF for all 
100 MultiRoom8 cross-condition experiment setups.   
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classifiers, the median value of the EER distribution using a 30-dimensional PLS subspace is 
lower than the value attained using the GMMSV-SVM.  If a larger development data set were 
available, it would be an interesting study to continue increasing the dimensionality of the PLS 
subspace to determine at which point the trend fails.   

5 CONCLUSIONS AND RECOMMENDATIONS 

This technical report describes a set of experiments designed to evaluate various techniques for 
improving the performance of a speaker recognition system in data conditions that contain both 
room and microphone variability.  Consistent with recent trends in the research community, the 
primary focus was on dimensionality reduction techniques applied to the GMM supervector, 
which attempt to find a lower-dimensional subspace that only represents individual speakers and 
removes the variability introduced by the room and environment.  Three pattern classification 
methods were applied to the decomposed supervectors to determine the most appropriate method 
for processing the features.  The results of the experiments conducted in this research effort 
provide support for the combination of partial least squares decomposition of the GMM 
supervector and nearest neighbor classification using a correlation-based distance metric.  The 
combination of these techniques provided significant improvements in equal-error rate when 
compared to the SVM applied to the GMM supervector, and consistently outperformed both the 
Random Forest and the SVM applied to the PLS-decomposed supervector. 

The development of methods for decomposing supervectors is a topic that is currently receiving 
significant attention in the speaker recognition research community.  The use of partial least 
squares has several advantages in the application to speaker recognition.  The linear projection 
provides a more tractable and computationally manageable task, particularly given the 
dimensionality of the GMM supervector.  The decomposition is supervised (an advantage over 
principal component analysis), and finds a subspace projection that optimizes a measure jointly 
dependent on both the supervectors and the label set.  The partial least squares decomposition is 
also natively capable of handling multiple speakers (i.e. native M-ary classification) and can be 
run with a single observation per speaker.   

The strong performance observed using partial least squares (PLS) on the MultiRoom8 data set 
motivates further study.  A larger data set would enable a more thorough examination of the 
effects of environment variability.  Ideally, a larger data set would contain not only more speaker 
files (providing more statistical significance to the results) but would also draw from more 
conditions in the MultiRoom collection such that the impact of a development data set 
constructed with more complete information can be examined.  A data set with greater diversity 
would also be appropriate for an interesting comparison of more sophisticated constructions of 
partial least squares.  There are several distinct sources of environmental variability in the 
MultiRoom8 data: different types of microphone (omni vs. directional), distances between the 
microphone and speaker, and different rooms.  There have been efforts to modify the PLS 
framework in a manner that acknowledges the multidimensional nature of some data collection 
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environments.  The standard PLS framework showed promise in the current research effort; 
however, these newer PLS methods utilize a more sophisticated construction that may be useful 
for speaker recognition.  Techniques such as Tri-PLS and M-way PLS use a tensor formulation 
to distinguish the higher-order differences in the data collection conditions, allowing for a more 
individualized treatment of the sources of variation when constructing the decomposition model.  
There has been substantial research in the field of chemometrics to develop more sophisticated 
approaches to PLS decomposition, and these techniques could potentially be useful to the 
speaker recognition community.  Thus, it would be appropriate to consider a cross-disciplinary 
study of techniques that are being developed for chemometric to the channel and environment 
variability issues that are currently receiving much attention in speaker recognition.  

In addition to the partial least squares approach to supervector decomposition, a technique 
referred to as classification-directed dimensionality reduction (CDDR) was also considered in 
this study as a method for nonlinear subspace projection.  Recently, a nonlinear extension of PLS 
(i.e. kernel PLS) has been applied to the speaker recognition task [16].  There is great potential 
for nonlinear decomposition techniques to outperform simpler, linear projections since the 
decision to use a linear method is typically due to computational and stability concerns rather 
than the appropriateness of a linear model.  In the consideration of nonlinear subspace 
decomposition techniques, the challenge is to add sufficient expressivity and flexibility without 
creating a problem that becomes computationally intractable or ill-posed.  The CDDR method 
has shown promise when applied to other data sets and compared favorably to principal 
component analysis and partial least squares; unfortunately, efforts with the CDDR method 
never proceeded beyond the preliminary stage.  Further investigation is necessary to evaluate the 
CDDR method and other nonlinear subspace decompositions in the context of the results 
presented in this technical report. 

The results and conclusions in the current research effort were focused on identifying macro-
level trends by comparing performance across conditions.  There may be insight to be gained by 
additional study of the proposed PLS and subspace decomposition techniques with a focus on 
individual subjects, analyzing performance within Doddington’s classic context of sheep, 
wolves, and goats.  Further study of performance for individual types of subjects could 
potentially motivate strategies for fusion of different methods.  For performance on the macro-
level, there were not strong patterns identified in the performance of PLS-NN versus PLS-SVM 
that would clearly indicate a preference for specific methods applied to an entire population for 
certain conditions.  An investigation of the speaker-specific conditions under which specific 
algorithms may be preferable, or fusion of multiple algorithms, could be a promising avenue for 
further research that is motivated by the significant differences between the algorithms observed 
for at least some of the conditions (i.e. there is never a universally best method.  Parameterizing 
the preferences or fusion parameters in terms of the training/testing condition mismatch would 
be the desired outcome of such an investigation.   
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APPENDIX 

First NormFeat call configuration parameters: 

mode norm 
bigEndian false 
loadFeatureFileFormat SPRO4 
saveFeatureFileFormat SPRO4 
loadFeatureFileExtension .prm 
saveFeatureFileExtension .norm.prm 
featureServerBufferSize ALL_FEATURES 
sampleRate 8000 
labelSelectedFrames speech 
segmentalMode false 
writeAllFeatures true 
frameLength 0.02 
vectSize 32 
featureServerMode FEATURE_WRITABLE 
featureServerMemAlloc 500000000 
addDefaultLabel true 
defaultLabel speech 
featureFilesPath ./feats/ 
verbose false 
debug false 
 

  

Approved for Public Release; Distribution Unlimited. 
 

37



Energy Detector configuration parameters: 

verbose false 
verboseLevel 0 
debug false 
loadFeatureFileExtension .norm.prm 
saveLabelFileExtension .lbl 
loadFeatureFileFormat SPRO4 
saveFeatureFileFormat SPRO4 
saveFeatureFileSPro3DataKind FBCEPSTRA 
minLLK -200 
maxLLK 200 
bigEndian false 
featureServerBufferSize ALL_FEATURES 
labelOutputFrames speech 
frameLength 0.02 
% featureServerMask 0-31 
vectSize 32 
labelSelectedFrames all 
addDefaultLabel true 
defaultLabel all 
nbTrainIt 8 
segmentalMode file 
varianceFlooring 0.0001 
varianceCeiling 1.5 
mixtureDistribCount 10 
baggedFrameProbabilityInit 0.001 
thresholdMode weight 
alpha 0.00 
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Second NormFeat call configuration parameters: 

mode norm 
bigEndian false 
loadFeatureFileFormat SPRO4 
saveFeatureFileFormat SPRO4 
loadFeatureFileExtension .norm.prm 
saveFeatureFileExtension .mfcc 
featureServerBufferSize ALL_FEATURES 
sampleRate 8000 
labelSelectedFrames speech 
addDefaultLabel true 
defaultLabel speech 
segmentalMode false 
frameLength 0.02 
vectSize 32 
featureServerMode FEATURE_WRITABLE 
featureServerMemAlloc 500000000 
writeAllFeatures false 
loadFeatureFileVectSize 32 
saveLabelFileExtension .lbl 
labelFilesPath ./labels/ 
verbose false 
debug false 
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TrainTarget configuration parameters: 

inputWorldFilename TRAINED_WORLD 
gender M 
bigEndian false 
featureServerMemAlloc 10000000 
featureServerBufferSize ALL_FEATURES 
featureServerMode FEATURE_WRITABLE 
frameLength 0.02 
sampleRate 8000 
writeAllFeatures true 
segmentalMode false 
debug false 
saveMixtureFileFormat RAW 
loadMixtureFileFormat RAW 
loadMixtureFileExtension .gmm 
saveMixtureFileExtension .gmm 
loadFeatureFileFormat SPRO4 
loadFeatureFileExtension .mfcc 
loadMatrixFormat DB 
saveMatrixFormat  DB 
%loadMatrixFilesExtension .matx 
%saveMatrixFilesExtension .matx 
%vectorFilesextension .sv 
%featureServerMask 0-18,20-50 
%loadFeatureFile 
addDefaultLabel true 
defaultLabel speech 
labelSelectedFrames speech 
normalizeModel false 
mixtureFilesPath ./gmm/ 
%matrixFilesPath ./mat/ 
%vectorFilesPath ./svec/ 
%featureFilesPath E:\data\Abacus_MFCC\2006\train\ 
computeLLKWithTopDistribs COMPLETE 
topDistribsCount 10 
maxLLK 200 
minLLK -200 
nbTrainIt 1 
MAPAlgo MAPOccDep 
meanAdapt true 
MAPRegFactorMean 14.0 
regulationFactor 14.0 
%targetIdList ./ndx/target_male_1conv4w.2006.ndx 
channelCompensation none 
saveMixture true 
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TrainWorld configuration parameters: 

featureFilesPath ./ 
mixtureFilesPath ./gmm/ 
labelFilesPath ./labels/ 
loadMixtureFileFormat RAW 
loadMixtureFileExtension .gmm 
saveMixtureFileFormat RAW 
saveMixtureFileExtension .gmm 
loadFeatureFileFormat SPRO4 
loadFeatureFileExtension .norm.prm 
bigEdian false 
featureServerBufferSize ALL_FEATURES 
distribType GD 
frameLength 0.02 
vectSize 32 
labelSelectedFrames speech 
debug true 
verbose true 
fileInit false 
%inputWorldFilename xxx 
normalizeModel true 
mixtureDistribCount 500 
baggedFrameProbabilityInit 0.08 
maxLLK 200 
minLLK -200 
baggedFrameProbability 0.1 
nbTrainIt 6 
initVarianceFlooring 0.5 
initVarianceCeiling 10.0 
nbTrainFinalIt 4 
finalVarianceFlooring 0.5 
finalVarianceCeiling 10.0 
numThread 2 
verbose false 
debug false 
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ComputeTest configuration parameters: 

bigEndian                           false 
featureServerMemAlloc               10000000 
featureServerBufferSize             ALL_FEATURES 
featureServerMode               FEATURE_WRITABLE 
frameLength                         0.02 
sampleRate                          8000 
writeAllFeatures                    true 
segmentalMode                       false 
debug                               true 
  
  
***************************************************************************** 
*   In & Out 
***************************************************************************** 
saveMixtureFileFormat               RAW 
loadMixtureFileFormat               RAW 
loadMixtureFileExtension            .gmm 
saveMixtureFileExtension            .gmm 
  
loadFeatureFileFormat               SPRO4 
loadFeatureFileExtension            .mfcc 
  
loadMatrixFormat                    DB 
saveMatrixFormat                    DB 
  
loadMatrixFilesExtension            .matx 
saveMatrixFilesExtension            .matx 
  
vectorFilesExtension                .sv 
  
  
***************************************************************************** 
*   Path  
***************************************************************************** 
mixtureFilesPath                    ./gmm/ 
matrixFilesPath                     ./mat/ 
vectorFilesPath                     ./svec/ 
% featureFilesPath                  
C:\Users\Jenniffer\Desktop\MistralWin32\MistralWin32\Lia_Spk_Det\ 
  
  
******************************************************** 
*      Feature options 
******************************************************** 
% featureServerMask                 0-18,20-50 
vectSize                            32  
loadFeatureFileBigEndian            false 
addDefaultLabel                     true 
defaultLabel                        speech 
labelSelectedFrames                 speech 
normalizeModel                      false 
ndxFilename ndx.lst 
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***************************************************************************** 
*      Computation 
***************************************************************************** 
computeLLKWithTopDistribs               COMPLETE 
topDistribsCount                    10 
maxLLK                                  200 
minLLK                                  -200 
nbTrainIt                       1 
  
labelSelectedFrames                     speech 
normalizeModel                      false 
  
MAPAlgo                         MAPOccDep 
meanAdapt                       true 
MAPRegFactorMean                    14.0 
regulationFactor                    14.0 
  
***************************************************************************** 
*      ComputeTest Specific Options 
***************************************************************************** 
% ndxFilename                       .\ndx 
outputFilename                      score.res 
  
  
% channelCompensation                   none 
 inputWorldFilename                     TRAINED_WORLD 
gender M 
featureFilesPath ./feats/ 
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Main MATLAB script for generating cross-condition EER matrices 

UBM_Training='/home/speakerid/MultiRoom8/Development'; 
  
folders={'Condtion4_Enroll-Sm4/train','Condtion7_Med5-Sm5/test',... 
    'Condtion7_Med5-Sm5/train','Condtion1_Lg5-Sm4/train',... 
    'Condtion3_Enroll-Sm6/test','Condtion8_Med2-MultiTrans/train',... 
    'Condtion5_Med3-Sm3/test','Condtion5_Med3-Sm3/train',... 
    'Condtion2_Sm4-Lg5/train','Condtion6_Lg4-Med5/train'}; 
  
SPRO='/home/speakerid/spro-4.0/sfbcep'; 
SPROTxt='/home/speakerid/spro-4.0/scopy'; 
  
% NormFeat Directory Paths: 
NormFeatExe='/usr/local/LIA_RAL/2.0/bin/NormFeat'; 
NormFeatConfig='/home/ALIZEToolbox/NormFeat.cfg'; 
NormFeatConfig2='/home/ALIZEToolbox/NormFeat_energy.cfg'; 
  
% EnergyDetector Directory Paths: 
EnergyDetectExe='/usr/local/LIA_RAL/2.0/bin/EnergyDetector'; 
EnergyDetectConfig='/home/ALIZEToolbox/EnergyDetector.cfg'; 
  
% UBM and GMM Training Directory Paths: 
UBMExe='/usr/local/LIA_RAL/2.0/bin/TrainWorld'; 
UBMConfig='/home/ALIZEToolbox/TrainWorld.cfg'; 
  
GMMExe='/usr/local/LIA_RAL/2.0/bin/TrainTarget'; 
GMMConfig='/home/ALIZEToolbox/TrainTarget.cfg'; 
  
SVExe = '/usr/local/LIA_RAL/2.0/bin/modelToSv'; 
SVConfig = '/home/ALIZEToolbox/modelToSv.cfg'; 
  
computeTestExe='/usr/local/LIA_RAL/2.0/bin/ComputeTest'; 
computeTestConfig='/home/ALIZEToolbox/ComputeTest.cfg'; 
  
EER=nan(length(folders)); 
  
TrainUBM(UBM_Training,SPRO,SPROTxt, NormFeatExe,... 
    NormFeatConfig, NormFeatConfig2, EnergyDetectExe,... 
    EnergyDetectConfig, UBMExe, UBMConfig) 
  
 matlabpool open 
  
% extract all the features, learn all the GMMs 
parfor i = 1:length(folders)   
    GMMprocess=['/home/speakerid/MultiRoom8/' folders{i} '/seg1']; 
  
TrainGMM(UBM_Training,GMMprocess,... 
    SPRO, SPROTxt, NormFeatExe, NormFeatConfig,... 
    NormFeatConfig2, EnergyDetectExe, EnergyDetectConfig,... 
    GMMExe, GMMConfig) 
  
% extract supervectors 
SupVect(GMMprocess,SVExe,SVConfig); 
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    GMMprocess=['/home/speakerid/MultiRoom8/' folders{i} '/seg2']; 
  
TrainGMM(UBM_Training,GMMprocess,... 
    SPRO, SPROTxt, NormFeatExe, NormFeatConfig,... 
    NormFeatConfig2, EnergyDetectExe, EnergyDetectConfig,... 
    GMMExe, GMMConfig) 
  
% extract supervectors 
SupVect(GMMprocess,SVExe,SVConfig); 
  
end 
  
  
for traincondition= 1:length(folders) 
parfor testcondition = 1:length(folders) 
    GMM_Test=['/home/speakerid/MultiRoom8/' ... 
        folders{testcondition} '/seg2']; 
    GMM_Train=[' /home/speakerid/MultiRoom8/' ... 
        folders{traincondition} '/seg1' ]; 
  
FID = int2str(100*traincondition + testcondition); 
  
[FID] = ComputeDecisionMetrics(computeTestExe, computeTestConfig,... 
    GMM_Test,GMM_Train, FID); 
  
[EER(traincondition,testcondition)]=Scoring(computeTestExe, ... 
    computeTestConfig, GMM_Test,... 
    GMM_Train, 1,FID); 
  
     
end 
end 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

CDDR: Classification Directed Dimensionality Reduction 
DET: Detection Error Trade-off 
EER: Equal-Error Rates 
EMAP: Extended Maximum A Posteriori 
GMM: Gaussian Mixture Model 
GMM-UBM: Gaussian Mixture Model – Universal Background Model 
GMMSV-NN: GMM supervector features with nearest neighbor classifier 
GMMSV-RF: GMM supervector features with Random Forest classifier 
GMMSV-SVM: GMM supervector features with linear-kernel Support Vector Machine  
LDA: Linear Discriminant Analysis 
LFA: Latent Factor Analysis 
MAP: Maximum A Posteriori 
MFCC: Mel-Frequency Cepstral Coefficients 
NIST: National Institute of Standards and Technology 
NN:  Nearest Neighbor 
PCA: Principal Component Analysis 
PLS: Partial Least Squares 
PLS-NN: Partial Least Squared decomposed supervector with nearest neighbor classifier 
PLS-RF: Partial Least Squared decomposed supervector with Random Forest classifier 
PLS-SVM: Partial Least Squared decomposed supervector with radial-basis kernel Support       
Vector Machine   
PLSDA: Partial Least Squares Discriminant Analysis 
RBF: Radial Basis Function 
RF: Random Forest 
SVM: Support Vector Machine 
UBM: Universal Background Model 
 
 

Approved for Public Release; Distribution Unlimited. 
 

46


	LIST OF FIGURES
	LIST OF TABLES
	1 SUMMARY
	2 INTRODUCTION
	3 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Baseline GMM-UBM processing
	3.2 Pattern Classification Techniques
	3.3 GMM Supervector Decomposition
	3.4 Experiment design and list of experiments

	4 RESULTS AND DISCUSSION
	4.1 Baseline GMM-UBM parameter sensitivity
	4.2  MultiRoom8 speaker recognition results
	4.3 Effect of supervector decomposition on speaker recognition system performance
	4.4 Effect of supervector decomposition subspace dimensionality

	5 CONCLUSIONS AND RECOMMENDATIONS
	6 REFERENCES
	APPENDIX

	LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS



